
20 Periodic solutions. A first encounter with chaos

I already showed that discrete dynamical systems or maps can have periodic orbits. Here I will discuss
them at some length.

Definition 1. Consider a discrete dynamical system x 7→ f(x), x ∈ U ⊆ R. A point x̂ is called
k-periodic or a periodic point with period k if fk(x̂) = x̂.

Recall that
fk = f ◦ . . . ◦ f︸ ︷︷ ︸

k times

.

Therefore I have that k-periodic point is a fixed point of the k-th iteration of f and 1-periodic point
is simply a fixed point of the map f . The orbit that starts at x̂ and consists of exactly k points is
called a periodic orbits. Note that every point of this orbit is k-periodic.

I am interested in stable periodic orbits. This is equivalent to studying the stability of a fixed
point of the k-th iterate of f . The only thing is to check that the stability of the periodic orbit does
not depend on the choice of a particular point.

To wit, let {x1, x2, . . . , xk} be a periodic orbit. Consider,

µi =
dfk

dx
(xi), i = 1, . . . , k.

Since xi = f(xi−1) for all 1 < i < k and x1 = f(xk), I have

µi =
df

(
fk−1(xi−1)

)
dx

= f ′(xi−1)
dfk−1

dx
(xi) = . . . = f ′(xi−1)f

′(xi−2) . . . f
′(xi),

and does not depend on i. Therefore the stability condition for a periodic orbit takes the form

|f ′(x1) . . . f
′(xk)| < 1.

In general, if a discrete map x 7→ f(x) is non-monotone then it may have quite intricate structure
of periodic and non-periodic points. To formulate one of the most famous results, consider an ordering
of all natural numbers:

3 ≻ 5 ≻ 7 ≻ . . . ≻ (all odd numbers except for 1)

≻ 2 · 3 ≻ 2 · 5 ≻ (all odd numbers except for 1 multiplied by 2)

≻ 22 · 3 ≻ 22 · 5 ≻ ( all odd numbers except for 1 multiplied by 22)

≻ . . . ≻
≻ 23 ≻ 22 ≻ 2 ≻ 1.

Theorem 2 (Sharkovsky1). Consider continuous map x 7→ f(x) of the interval U into itself and
assume that it has a k-periodic point. Then f has m-periodic points for all m such that k ≻ m. In
particular, if f has a 3-periodic point, it has orbits of any period.
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1Sharkovsky, A. N. (1965). On cycles and the structure of a continuous mapping. Ukranian mathematical journal,
17(3), 104-111.
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Sharkovsky’s theorem was rediscovered in a famous paper by Li and Yorke, in which the term
“chaos” was used for the first time to indicate that the behavior of the orbits is very irregular. The
existence of periodic orbits of all possible periods is clearly an indication of a complicated behavior,
however more was shown in the paper:

Theorem 3 (Li and Yorke2). Consider continuous map x 7→ f(x) of the interval U into itself and
assume that it has a 3-periodic point. Then there is an uncountable subset S of U such that every
orbit starting in S is aperiodic and unstable.

Example 4. Consider again the logistic family x 7→ rx(1 − x) =: fr(x) which maps [0, 1] → [0, 1] if
0 ≤ r ≤ 4. I know that it admits periodic solutions of period 2 and 4. Let me show that there is
r ∈ [0, 4] for which fr has 3-periodic orbit. I need to find x1, x2, x3 such that

x2 = fr(x1), x3 = fr(x2), x1 = fr(x3),

and hence each of these points is a fixed point of f3
r . The value of r when such fixed points can appear

corresponds to the case when df3
r

dx (x) = 1 (see the figure). Therefore, I have a system of two equations
with two unknowns

f3
r (x) = x,

df3
r

dx
(x) = 1,

which can be solved numerically3 yielding

r ≈ 3.8284, x1 ≈ 0.1599, x2 ≈ 0.5144, x3 ≈ 0.9563.

You can also see this orbit of period three in the figure, where the cobweb diagram is shown (right
panel).
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Figure 1: 3-periodic point in the logistic map x 7→ rx(1− x) for r = 1 +
√
8 ≈ 3.83

Example 5. Consider Ricker’s map

x 7→ rxe−x, r > 0,

2Li, T. Y., & Yorke, J. A. (1975). Period three implies chaos. American mathematical monthly, 985–992.
3It turns out that the exact value of r is 1 +

√
8, but to prove that this is exactly the parameter value of 3-periodic

point is not a simple problem
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which maps R+ to R+. There is always fixed point x̂0 = 0, if r > 1 another fixed point appears,
x̂1 = log r. The multiplier of x̂1 is µ1 = 1 − log r, therefore x̂1 is a sink if 1 < r < e2 and a source
if r > e2, when r = e2 =: r1 I have µ1 = −1 and I observe the flip bifurcation, which, as can be
shown, is accompanied by appearance of a stable 2-periodic point. It can be checked numerically
that for r2 ≈ 12.51 2-periodic point loses stability via the flip bifurcation with appearance of a stable
4-periodic point. Next, for r4 ≈ 14.24 a stable 8-periodic point appears, and for r8 ≈ 14.65 a stable
16-periodic point is born via the same bifurcation (see the figure).

1
0

1

2

3

4

5

r

r1 r2 r4 r8

Figure 2: Period doubling or flip bifurcations in Ricker’s map x 7→ rxe−x

It is natural to assume that there is an infinite sequence of the bifurcation parameter values
r2k , k = 0, 1, 2, . . .. It can be shown, actually, that

r2k − r2k−1

r2k+1 − r2k

converges to a constant µF , called Feigenbaum’s constant, which can be found as ≈ 4.6692. Moreover,
the same constant appears in different maps and, hence, universal. Therefore, the sequence of flip,
or period doubling, bifurcations, appears over and over again in discrete dynamical systems, and was
called the period doubling rout to chaos (keep in mind that I did not even try to define what chaos
means). In particular, it should be clear that the sequence of r2k converges quite fast to a limiting
value r∞ (for the logistic equation r∞ ≈ 3.5699).

This period doubling rout to chaos can be visualized as a bifurcation diagram, which is shown in
the following figure for the logistic equation.

For comparison I also present full bifurcation diagram for Ricker’s map
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Figure 3: Bifurcation diagram for the logistic map x 7→ rx(1− x)
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Figure 4: Bifurcation diagram for Ricker’s map x 7→ rxe−x
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